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Abstract
In regular airborne Synthetic Aperture Radar applications the quality of the processed image depends on the accuracy
of the flight path measured by an inertial navigation system. Usually, only approximated flight paths are available.
Autofocus techniques sharpen the resulting images, but do not correct the flight path. In this paper we present a
method to reconstruct the exact flight path from the focused image and the range compressed data. We show that the
flight path can be reconstructed precisely for a wide antenna beam of more than 20◦.

1 Introduction

In an airborne Synthetic Aperture Radar (SAR) scenario,
inaccuracies in the measured flight path cause phase
errors in data. These errors lead to an unfocused image.
To generate an optimally focused SAR image, the actual
flight path has to be known precisely. Typically, the flight
path is measured by an inertial navigation systems (INS)
mounted on the platform. However, even expensive,
accurate INS units yield imprecisely approximated flight
paths due to thermal noise and accumulation errors.

Since only approximated flight paths are available,
SAR autofocus techniques were developed to improve
image quality without the knowledge of the exact
flight path. Almost all of these methods correct phase
errors in the data. However, they do not correct the
measurement errors of the INS unit. Hence, after the
total processing the real flight path is still unknown. The
phase corrections, which are estimated by an autofocus
method, cannot easily be used to correct the flight path.
The 3D position error cannot be estimated from the 1D
phase correction, which is in principal the difference
between the real flight path and the measured flight path
projected onto the evaluation plane.

In this paper, we show how to estimate real flight paths
from range compressed data and already focused images.
We do not propose a new autofocus technique.

Our flight path reconstruction method avoids techniques
like prominent point processing, since problems arise if
no symmetric point reflector is in the scene. Furthermore,
we avoid image sharpness functions, because finding an
optimal sharpness function of SAR images is still under
research.
Instead of these common techniques we use the entire
focused image as a representation of the real reflectivity
function so that even asymmetric point targets do not
cause problems.

One limiting factor is the azimuth beam width and the
evaluation beam width. To reconstruct the flight path
exactly, both angles must be approximately greater than
20◦. Otherwise there is not enough information in the
data to distinguish between altitude, range and velocity
of the airplane.

This paper is organized as follows. The signal model
as well as the data generation process are described
in Section 2. From this signal model we derive the
algorithm, which reconstructs the flight path as a post
processing step in Section 3. The proposed algorithm is
based on a Newton type method with nonlinear Tikhonov
regularization to compute the flight path iteratively.
Section 4 gives three numerical examples to show the
performance of this proposed algorithm. Section 5 draws
the conclusion.

2 Signal Model
Assuming the airplane flies with arbitrary velocity v
along a flight path γ : L → R3, which is parametrized by
the slow time s ∈ L := [0, Ta]. Here Ta is the synthetic
aperture time corresponding to the synthetic aperture
length. The actual flight path γ is modeled by a straight
line γ added by some curves γ̃, which are generated by
a 3D colored noise function. We use additive Gaussian
white noise and a Hann window lowpass-filter in x, y and
z to model γ̃. Thus, the real flight path γ is generated by

γ(s) = γ(s) + γ̃(s), s ∈ L .

Moreover, let the transmitted chirp pulses p [2], which
vary with fast time t, be

p(t) = rect( tT ) exp(−2πifct) exp(iπκt2), t ∈ T ,

with carrier frequency fc, chirp rate κ, pulse duration T
and sampling time interval T . We assume that the ground
is a flat surface at height z ≡ 0. The reflectivity function
V represents the scatterer in the illuminated area.



Thus, the signal model given by Cheney [1] of the range
compressed data is

d(t, s) =

∫
Ω

A(t, s,x)V(x) si
(
πκT

(
t− 2||γ(s)−x ||2

c

))
· exp

(
− 2πifc

2||γ(s)−x ||2
c

)
dx, (1)

where c is the speed of light, A the antenna beam pattern
and Ω the illuminated scene. Note that in a spotlight
scenario the antenna beam pattern A can be neglected,
because all targets are in the illuminated area Ω.

3 Flight Path Reconstruction

In this section we firstly introduce the flight path
reconstruction problem in terms of a nonlinear inverse
problem. We derive the algorithm from the nonlinear
system equation by applying a Newton type method
including a regularization technique. In the second part
of this section we describe the implementation of the
algorithm.

3.1 Problem Formulation

Let V be the known reflectivity function, d the range
compressed data and γ the unknown, actual flight path,
from which only an initial approximation γ0 is available.
The system equation (1) reads in operator form

ΛV(γ) = d, (2)

where ΛV is the forward operator including the true
reflectivity V . To find γ from d and V the nonlinear
problem (2) has to be solved. Following the idea of
Newton type methods, we firstly linearize equation (2)
by applying the Taylor approximation for operators [6]:

ΛV(γ0) + ∂γΛV(γ0) (γ−γ0) + ε = d. (3)

The derivative ∂γΛV(γ0) of the forward operator ΛV
of the flight path γ is generally a Frechet Derivative
[7]. We define h = γ−γ0 to be the difference
between the unknown flight path γ and an initial solution
γ0. Since we are only interested in the first order
Tailor approximation, we neglect the approximation error
ε. From equation (3) we find the linearized operator
equation

∂γΛV(γ0)h = w. (4)

Here w := d− ΛV(γ0) is the right-hand side containing
the range compressed data d and the synthetically
generated data ΛV(γ0) along the initial flight path γ0.
Remind that the synthetic data ΛV(γ0) can be assembled
by the system equation (1).

Moreover, the derivative ∂γΛV(γ0) is directly derived
from the system equation (1):

∂γΛV(γ0) =∫
Ω

V(x)

(
sin
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c

)
(
t− 2||γ0(s)−x ||2

c

)2 −
cos
(
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c

)
t− 2||γ0(s)−x ||2

c

)

· 2
c

exp
(
−4πifc

c
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)
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||γ0(s)−x ||2
dx (5)

+

∫
Ω

V(x) si
(
πκT

(
t− 2||γ0(s)−x ||2

c

))
· −4πifc

c
exp

(
−4πifc

c
||γ0(s)− x ||2

)
γ0(s)−x
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=: ∂cγΛV(γ0) + ∂fγΛV(γ0).

The first integral denoted by ∂cγΛV(γ0) describes the
coarse flight path reconstruction, where the derivative
of the si-function mainly dominates the integral. The
second integral denoted by ∂fγΛV(γ0) describes the fine
flight path derivative, where the phase information is used
to correct small motion errors.

So far, we explained all components of equation (4).
Now we show how to solve it. Since equation (4) is
the linearization of the nonlinear equation (2) it has to
be solved iteratively, which is the idea of a Newton type
method. Since equation (4) describes a linear inverse
problem, which is in general a challenging task, we apply
the Tikhonov regularization method [3] to ensure that the
solution is well defined. So we summarize the basic idea
of the proposed flight path reconstruction algorithm:

γi+1 = γi +hα,i,

hα,i = arg min
h

(
||∂γΛV(γi)h− wi||2 + α||Dh||2

)
, (6)

wi = d− ΛV(γi).

In every iteration of the algorithm we compute the
residual data wi, solve the regularized equation (6) and
update the flight path.
The flight path difference hα,i depends on the
regularization parameter α. The purpose of α is to find a
compromise between accuracy and stability and has to be
chosen advisedly. How to find a suitable α is mentioned
in the next section. As penalty operator D we use a
finite difference operator. This operator includes the a
priori information that the flight path must be a smooth,
continuous curve in R3.

One can show that solving equation (6) is equivalent to
solve the following problem:

γi+1 = γi +hα,i,

hα,i =
(
∂γΛV(γi)

>∂γΛV(γi) + αD
)−1

(7)

· ∂γΛV(γi)
>wi,

wi = d− ΛV(γi).

Finally, this is the core of the proposed flight
path reconstruction algorithm and the basis of our
implementation.



3.2 Implementation
In the previous section we derived the core of the flight
path reconstruction algorithm (7) from the nonlinear
system equation (2). The key idea is to update the flight
path iteratively so that it converges to the actual flight
path. To compute the update hα,i, a linearized inverse
problem has to be solved in every iteration.

Here we want to give an overview of the implementation
of the proposed algorithm. The algorithm is divided into
two parts: Firstly, the coarse part does a registration of
the flight path to less than one half of the wavelength
λ. Secondly, the fine part uses the phase information to
reconstruct the unknown flight path accurately.
The following pseudocode shows the process of the
proposed algorithm, more precisely the sequential two
parts of them:

Algorithm in pseudocode
Input: d, V , γ0

Output: γ
01: Load data d
02: Load focused image V
03: Load initial flight path γ0

04: Set i = 0
05: while ||γi+1−γi ||2 < εc0 do
06: Assemble ∂cγΛV(γi) by equation (5)
07: Assemble ΛV(γi) by equation (1)
08: wi = d− ΛV(γi)
09: Compute hα,i by equation (7)
10: γi+1 = γi +hα,i
11: i = i+ 1
12: end
13: while ||γi+1−γi ||2 < εf0 do
14: Assemble ∂fγΛV(γi) by equation (5)
15: Assemble ΛV(γi) by equation (1)
16: wi = d− ΛV(γi)
17: Compute hα,i by equation (7)
18: γi+1 = γi +hα,i
19: i = i+ 1
20: end
21: return γ = γi+1

The regularization parameter α depends mainly on the
eigenvalues of the linearized operator ∂γΛV(γi). To
avoid an computationally expensive eigenvalue analysis,
the following approximation is mostly sufficient:

α = mean(diag
(
∂γΛV(γi)

>∂γΛV(γi)
)
.

In other words, α is the mean value of all entries on the
main diagonal of the regularized operator.

For both termination conditions, ||γi+1−γi ||2 < εc0
for the coarse part and ||γi+1−γi ||2 < εf0 for the fine
part, we chose the values εc0 = 1 mm and εf0 = 0.01 mm.
These values describes the lower bounds of the mean
flight path update distance.

One main benefit of this algorithm is that in every
iteration step the whole flight path is reconstruction at
once. A pulse by pulse computation would result is a
non-smooth, discontinuous flight path.

4 Simulation Results
To show the capabilities and the limitations of the
proposed flight path reconstruction algorithm, we give
two synthetic examples and one real data example using
the public Gotcha Dataset [5]. In the first two we simulate
an X-band SAR system with parameters listed in Table 1.
The distance from the flight path center to the spot center
is approximately r0 = 1000 m. The depression angle is
θD = 45◦.
Below, it is shown that for a wide antenna beam the flight
path can be reconstructed with high precision, whereas in
the narrow beam case the accuracy decreases. The reason
is that the small spot yields not enough information to
separate range and altitude. In the third example we
show that deviations up to 1 m can be reconstructed for
the Gotcha Dataset [5] with real data. For the initial flight
path γ0 we use the straight line γ.

Before the example are presented in detail, we define
the azimuth beam width as the antenna beam width in
horizontal orientation. The vertical antenna beam width
is called evaluation beam width.

Table 1: Parameters of simulated X-band SAR system.

Parameter Value
Carrier frequency fc 9.6 GHz
Wave length λ 3 cm
Pulse bandwidth B 100 MHz
Pulse duration T 6µs
Sampling frequency fs 200 MHz
Mean platform velocity v0 100 m/s
Synthetic aperture length L 400 m
Pulse repetition frequency prf 200 Hz
Synthetic aperture time Ta 2 s
Squint angle θS 0◦

Depression angle θD 45◦

1) Wide beam:
In this first synthetic example we simulate a wide antenna
beam by placing four point targets in the scene. Two
targets are 200 m away from the spot center, two are
100 m, see Figure 1. This 200 m×400 m illumination
area models approximately a θaz = 20◦ azimuth beam
and a θev = 20◦ evaluation beam. To demonstrate that the
proposed method works even perfectly with asymmetric
point targets, we simulate each single target by three
single point targets in a row, see Figure 1. The data is
generated by equation (1) added by 10 dB Gaussian white
noise along the actual flight path shown in Figure 2 as a
dashed, blue line (partly overlaid by the red line, which
represents the reconstructed flight path).
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Figure 1: Four asymmetric point targets are placed
100 m and 200 m away from the spot center to simulate
a wide antenna beam. This optimal focused image is
processed by the global Backprojection algorithm using
the actual flight path.

The result of the flight path reconstruction algorithm is
shown in Figure 2. It shows, that the azimuth, range
and altitude-component of the actual flight path are
reconstructed precisely. This means that measurement
errors of the INS unit can be corrected in the wide
beam case up to half of the wavelength. The usage of
asymmetric point reflectors shows the advantage of the
inclusion of the entire image.

Figure 2: Simulated flight path in the case of a 60◦

antenna beam in azimuth. The dashed, blue line is the
actual flight path γ. The continuous red line is the
reconstructed flight path and the dotted green line is the
initial solution γ0.

2) Narrow beam:
In the second example we simulate an azimuth beam
of θaz = 5◦ and an evaluation beam of θev = 2◦ as
approximately used in common SAR systems [4]. To do
so, we put four single point targets each 20 m away from
the spot center, see Figure 3. All other parameters are
still the same as in example 1).
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Figure 3: This well focused image is processed by the
global Backprojection algorithm. Four symmetric point
targets are placed each 20 m away from the spot center
to simulate this narrow antenna beam. Here the new
reconstructed flight path is used, which is different from
the actual flight path, see Figure 4.

The results in Figure 4 show that the azimuth component
of the position error, which is basically the acceleration,
is well reconstructed. However, the range and altitude
components do not converge as good as the azimuth to
the real flight path. The reason is that the phase history in
the narrow beam case contains not enough information to
separate the range from the altitude component. Small
deviations in range produces the same phase history
as small altitude deviations. However, this new flight
path fits to the raw data, so that an repeated image
processing of the range compressed data using this new
flight path would result in a focused image similar to
Figure 3. Finally, this shows that 3D position errors can
be approximated by 2D phase errors in the narrow beam
case.

Figure 4: This is the case of an 5◦ antenna beam angle
in azimuth. The azimuth, range and altitude deviations
of the straight line γ. The dashed, blue line is the actual
flight path γ. The continuous red line is the reconstructed
flight path and the dotted green line is the initial solution
γ0.
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Figure 5: Gotcha parking space [5] processed by the
global Backprojection algorithm. The reason of the
coarse spacial resolution is the short 2◦ circular aperture
containing only 234 pluses. The flight path in Figure 6
is computed from the reflectivity function seen in this
image.

3) Real data with narrow beam:
The third example demonstrates the results of the coarse
reconstruction applied to the Gotcha-Public Released
Dataset [5]. This dataset provides an X-band circular
SAR system with 640 MHz bandwidth, 45◦ depression
angle and a 150 m×150 m spot, see Figure 5. Here, the
azimuth beam angle θaz and the evaluation beam angle θev
are approximately 1◦. The spot is about r0 = 10 000 m
away from the flight path. In this dataset the true flight
path is available, so that measurement inaccuracies of the
INS unit are created artificially. We choose the initial
solution γ0 to be a straight flight path, see Figure 6.

The reconstructed range and altitude component of the
real circular trajectory are shown in Figure 6. Like in
example two, not the real flight path is reconstructed, but
the processing of the range compressed data with the new
flight path would yield to a well focused image.

Figure 6: Range and altitude of the flight path of the
Gotcha dataset [5]. Starting the proposed algorithm with
the green line ends up to the red line, which is the
projection of the true flight path, drawed by the blue line,
onto the evaluation plane.

5 Conclusion
An algorithm to reconstruct the actual flight paths from
range compressed data and focused SAR images is
presented in this paper. In general, the proposed method
can be used to correct the measurement errors of an
inertial navigation system as a post processing step after
the SAR image has been processed and focused by an
autofocus method.

We compute the real flight path iteratively by a nonlinear
Tikhonov regularization. Our algorithm does not use a
prominent point processing or a sharpness function. The
coarse part of this algorithm can handle deviations of
more than 1 m. The fine part uses the phase information
to correct the flight path within half a wavelength.

Our numerical examples show that in the case of a
wide antenna beam pattern greater than approximately
20◦ the path of the antenna can be reconstructed
precisely. If the beam is narrower, only an 2D version
of the path is computed. However, this 2D path is
a good approximation, because using this path in the
Backprojection algorithm yields well focused images.
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